Sunday, September 23, 2012

Inclusive Healthcare – Taking charge of our own healthcare


Inclusive Healthcare – Taking charge of our own healthcare


How often are you aware about cost and quality before attending a care provider? Does your provider involve you in your healthcare decisions?


For most of us, these questions wouldn’t elicit a positive response. Historically we have been used to unidirectional doctor patient communications wherein the individual patient has been passive, underutilized, or excluded from choices about care in a system that overcomplicates and sometimes hides useful data about safety, price, and quality.

However, in the face of mounting economic pressure in public and private systems, no one can afford to ignore the transformative potential of informed, empowered consumers. Patients are morphing into health care consumers with growing use of technology for medical shopping and health engagement

According to a survey conducted by Altarum , the health services research organization, virtually all (99%) of U.S. health citizens want to play a role in medical decisions about their care. However, consumers vary in just how much of that responsibility they want to assume:

-35% want to make the final decision with some input from doctors and other experts

-29% want to be completely in charge of their decisions

-28% want to make a joint decision with equal input from their doctor

-7% want their doctor to make the decisions, providing some input themselves

Just 1% wants the doctor to be completely in charge of treatment decisions.

The cost of care is an issue consumers are keen to know more of in health care. Altarum asked consumers about two health behaviors when receiving advice or services from a health provider — looking for information about doctor quality ratings before choosing where to go, and asking before a visit how much the cost would be. Overall, fewer than half of consumers asked about prices (42%) or investigated quality before receiving the health service (39%).

Importantly, engaging in these two health behaviors was less likely among folks who were in poor/fair health than those in excellent health, with 29% looking for quality information on providers and 34% asking about cost — compared with 62% of people in excellent health asking about quality and 60% asking about cost.

The survey found, consistent with other polls that most consumers trust and like their doctor. Furthermore, 76% of consumers also believe that their doctor would “never” recommend a test or procedure unless it was necessary.

Role of technology

Many patients would engage more fully in the management of their own health, but they face barriers caused by information asymmetry and a tradition of paternalism in provider-patient relationships. Communications technology plays a prominent role in erasing barriers and enabling consumerism in health care.

 

Consumerism is about giving every person the information and tools they need to choose safe, high- quality, affordable health care. When safety, quality, and cost metrics are widely available, all consumers benefit. When actively involved in making choices about care, patients experience fewer errors, fewer unnecessary procedures, and higher satisfaction.

Altarum looked into peoples’ use of computers and smartphones for everyday life tasks, such as playing games, locating stores and theatres, comparing gas prices, and conducting health care activities.

The findings: 35% of computer and smartphone users have used these tech’s for finding a doctor, 19% have downloaded a health app, 18% have compared prices of medicines, and 16% have compared prices for medical services. It is early days for comparative shopping in health, but this aspect of health-shopping is poised to substantially grow toward 2014 as health insurance exchanges and consumer-driven health plans put health citizens into the role of health shoppers.

What’s concerning in Altarum’s findings is that the poorer health the consumer perceives, the less consumer-empowered that individual feels. While 75% of those in excellent health say they’re confident they can reduce costs of care by shopping for better prices, only 30% of those in poor/fair health are confident in doing so. Thus, 70% of those in poor/fair health are uncertain/not at all confident that they’ll be competent health shoppers, able to reduce their health costs.

Yet it’s those in poorer health who tend to be higher cost patients.


 Key Initiatives

The Internet has changed both the way we live and the way that companies operate. The past decade has seen several entrepreneurial companies are positioning themselves to play starring roles in shedding light on prices and quality in health care — such as Castlighthealth , Changehealthcare, Clearhealthcosts  Consumers have been empowered by more information on price and quality, more choices in products and services, and more voice through review sites and online self-help options

New platforms have harnessed the “power of the crowd” by tapping into a broader base of intellectual capacity. Many of the services are giving patients new tools to understand and manage their own medical conditions and interact with peers. A good example is Patientslikeme , an online community of patients united by shared experience.

The large and growing “quantified self” movement, in which people measure and track the metrics that are important to them, is another facet of this. The Fitbit , and other such devices that let measure workouts and track them, are not just a fad. They’re an indication of the way people want to take charge of their health and decisions surrounding it

Finally, organizations from the public and private sectors are using digital innovations to target specific populations, promote broad-based campaigns across sectors, and facilitate interactive communications to prevent disease and promote health. These are digital initiatives for social impact. A prominent example is Michelle Obama’s Lets Move campaign, a multi-year, multichannel initiative to reduce childhood obesity.

 
With these digital innovations having a cascading impact on the healthcare consumers, it’s evident that the health-care ecosystem is heading towards a participatory and inclusive model, away from the authoritarian, paternalistic practices of yesteryear.

 

 

Tuesday, July 17, 2012


Clinical Research Informatics

I.                    The need for Clinical Research Informatics:

Healthcare providers having a ‘Research Centre/Institute’ tag suffixed to their display name has been a widespread phenomenon in our country. But in reality only a handful of them actually engage in active clinical research while the others often mistakenly use this to reap commercial benefits. The fact that clinical research is the lynchpin that connects innovative technologies from basic discovery research to their application as breakthroughs in patient care is deeply undervalued by healthcare centers. Most care providers treat clinical research as a byproduct of clinical care and the former is more of an afterthought / add on to the later.

The flow of research from bench to bedside and back again, through review in practice, necessitates a comprehensive research strategy aligned to the organizational vision. Many organizations falter with their research programs in absence of an appropriate strategy and leadership commitment.

Developing the right informatics infrastructure through provisioning relevant IT solutions is a vital cog to a comprehensive research strategy. Moreover, with the correct business model healthcare institutions derive additional research value from a sophisticated IT infrastructure.

But improvements through the use of electronic information exchange have been slow in clinical research studies for many reasons, including the lack of informatics infrastructure, exemplified by low EMR adoption, inconsistent data standards and database architecture, and insufficient analytic tools. Even though our healthcare leaders are being increasingly aware of the need for digitizing the hospital operations, potential efficiencies available through IT solutions for clinical research are largely undermined.

Studies indicated that over 75 percent of information obtained for support of clinical trials was entered on paper [1]. Use of electronic solutions can reduce the cost of data collection by 55% over paper [2]. Furthermore, the information once collected is typically entered for various needs from four to seven times by clinicians

Additionally, three main fields in science and medicine that are currently disconnected: 1) basic research, which tries to understand the fundamental principles and phenomena that drive cells, organisms and systems in both normal and pathological conditions (such as cancer); 2) translational research and applied medicine, which represent the application of basic research to solve specific problems, aid in diseases and help society at different levels and 3) EMRs or “Electronic Health Records” that have been developed as a new technology to facilitate both patient care and research by collecting and archiving patients’ history. The key bottleneck is how to efficiently integrate these three independent “parts” of medical and scientific areas in a single solution to improve patient care.

 A robust clinical research informatics platform would enable:

·         Integration of patient and research data

·         Sponsors to understand the progress of their research projects

·         Institutions to ensure ethical and regulatory compliance

·         Robust data collection, processing and reporting

·         Capturing and leveraging Intellectual Property generated

·         Enable collaboration among partners and others in research fraternity



II.                  The Clinical Research Workflow

Clinical Research Study might be stated as an overarching terminology which envisages sponsored or investigator initiated clinical trials or other survey oriented non interventional studies. A typical clinical research study lifecycle comprises of the following steps. The study originates from a hypothesis, and then is detailed in a study protocol. The protocol documentation includes study design and operational details such as the duration of the study, type of participants, inclusion and exclusion criteria for subjects, patients’ schedule for assessment and interventions, medications and dosages. Following this, the protocol is assessed by an Institutional Ethics Committee (IEC) or Institutional Review Board (IRB) to ensure the appropriateness of the clinical trial protocol as well as weigh the risks and benefits to study participants. It also reviews all study-related materials before and during the trial.

After the study is approved and site selection done, patient/subject are screened and recruited based on pre determined inclusions and exclusion criteria. Thereafter all enrolled study subjects/patients undergo series of assessment, investigations/interventions in compliance to the protocol schedule. The clinical research staff ensures appropriate documentation, deidentification of data per relevant standards and archiving of data. Collected data are analyzed and interpreted by researchers to derive inferences which form the basis for biomedical discoveries.

At the heart of clinical research is the immense data collection and analysis that determines the efficacy and safety of medical therapies. Currently, the processes for identifying subjects eligible for research, collecting study parameters, assembling information from multiple study sites, conducting oversight of study protocols, and analyzing results involve manual operations which are time consuming, labor intensive, and expensive


III.                Capabilities of an Integrated Clinical Research Informatics Model:

Historically, research and healthcare information technology systems have been disconnected, supporting separate, but sometimes redundant, processes and workflows. Unfortunately, the use of disparate systems can result in patient safety concerns, inefficient processes, data quality issues and challenges

Most Clinical Research Organizations (CROs’) and pharmaceutical companies engaged in clinical trials rely on commercial off the shelf Clinical Trial Management System (CTMS) solutions for digitizing the trial process. A CTMS package is an integrated suite of applications sharing a common database designed to help manage clinical trails acitivies at different levels. But for a hospital based clinical research presents unique informatics requirements that are amenable to solutions supported by EMR systems which might be already deployed. Such scenarios solicit an EMR integrated comprehensive informatics solution which extends beyond the scope of a traditional CTMS solution. The solution should enable:

·         Proactive identification of potential research subjects from the EMR database

·         Help screen and recruit research participants

·         Research data collection through electronic data capture methods (EDC)  from the EMR including Web, Hand held devices, and Phone based Interactive Voice recognition (IVR)

·         IRB Document management, amendment and milestone tracking

·         Randomization and blinding of participants in a randomized control trial

·         De-identification of data according to HIPAA standards

·         Trail reporting and identify data queries that needs to be addressed

·         Adverse events reporting

·         Easily move valid data from EMR into research registries

·         Facilitate secure EMR access for research  auditors/ monitors

·         Appropriately billing for Research visits to the sponsor unlike the normal visit

·         Tagging hospital patients enrolled in a research study for easy identification

·         Capture rich structured data from the EMR (phenotypic) and combine with bio-informatics data (genotypic)

·         Enable export data in format ( for eg: CDISC )for initial statistical purposes or downstream integration with other tools

·         Provide coding methods for fields such as pathology or medication data.



IV.               The Clinical Research Informatics Model

The desired capabilities of an EMR integrated Clinical Research Informatics solution, as discussed in the previous section, has been mapped to the enabling core IT systems functionalities .The following schematic represents a Reference Model which intends to aid decision makers make an informed choice while implementing IT systems for clinical research areas of the hospital. More often all of these functionalities might not be met by a single software solution but an integration of multiple systems might be necessary to achieve the desired research outcomes. This model also might form a basis for negotiations with the EMR vendor to include additional functionalities in the solution package to support clinical research

Moreover, this lays a longer-term foundation for accelerated discovery, extensive outcomes research, and ultimately a “learning health system” in which a “bench-to-bedside-to-bench” cycle of information will support continual improvement in knowledge, care and health

The model is split in two distinct zones meant for Patient Care and Clinical Research intersected by a Pseudonymisation wall

Research Specific Functionalities within EMR

The Electronic Medical Record (EMR) is the centerpiece to all patient care activities in the hospital. It is capable of capturing and archiving all information (for eg: charts, orders, results, medications, diagnosis, interventions etc) generated during patient care. For a hospital engaged in clinical research, the EMR can be optimized to envisage pro research functionalities such as:

      Study Feasibility & Screening – The EMR has potential to be an ideal system to search for patients that are eligible for an ongoing or potential study. All patient records from the EMR is maintained in a EMR Data Warehouse (EMR-DW), a system that enables the patient records to be stored and used for analytical purposes. With advanced search capabilities, it’s also possible to retrieve a series or records to retrospective chart reviews.

      Recruitment AlertingInclusion criteria for clinical research studies can be programmed into the EMR, which can the proactively alert the attending physician that a patient is eligible for enrolment into a study when they are in the clinic. Failure to recruit a sufficient number of eligible subjects presents a major impediment to the success of clinical trials. This can be addressed if the EMR has the capability of a real time Clinical Trial Alert (CTA). Without the assistance of IT solutions, recruitment is extremely slow, expensive, and low-yield.

      Patient Tagging & Participant Tracking – Identification of hospital patients involved in a research is crucial to protecting the safety and rights of participants. The EMR should be capable of flagging (a sort of identification on the patient’s record) the patient enrolled in a clinical research strudy with information about clinical trials/studies in which he/she is participating. This would help clinical staff, investigators, study coordinators, clinicians, and oversight bodies such as the IRB to follow participants throughout the research process and ensure that their safety and rights are protected. An Integrated participant tracking enables better management and eliminates need for multiple data entry

      Protocol Document Management – The system should have document management capabilities for support grants, peer review, IRB continuing review, ethics approval, adverse event reporting, etc and support the informed consent and re-consenting processes. Organizations of a larger scale prefer dedicated Enterprise Content Management systems to fulfill this need.

Research Study Management System: Core Functionalities.

1.      eCRF & Electronic Data Capture

Traditionally paper based Case Report Forms (CRF) have been used to transcribe relevant data manually from the medical record of a clinical research study subject. In a paper system, data are entered first on the clinical report form and second by the data entry group into an electronic system. An eCRF is a pre configured electronic form that eliminates manual data entry/re entry and fetches the data from the medical records through electronic data capture.

 The Electronic Data Capture (EDC) is a system that electronically transcribes clinical data from the EMR into the electronic case report form (eCRF). EDC replaces the traditional paper-based data collection methodology to streamline data collection and management.

Since data are entered into a data collection tool only once, processing time for data entry is reduced, and transcription errors are less likely. EDC can help clean and lock data faster than traditional paper CRF systems.

2.      Pseudonymisation

Research studies must use de-identified patient data according to relevant standards (for eg: HIPAA). This is not only a legal requirement but is essential for protecting patients’ rights. With that in effect, the patient data flow from clinical to research domain should channel through a data pseudonymisation system. This system will enable de-identification of patient identifiable data to accepted standards such as HIPPA, assign codes to the data  as well as support re-identification of patients in case of medical emergencies.  Following pseudonymisation the de-identified data is expected to reside in a separate research domain where is can be used by researchers who cannot identify which patient the data is particular to. This includes having the capability to handle cases of very small populations

The De-identification system needs to integrate with any system where Personal Health Information (PHI) is collected and will then be used for research purposes

3.      Randomization and Blinding

Randomization capability enables locally sponsored interventional clinical studies for systematic assigning patients to different study arms in a statistically robust fashion. It needs to interface with clinical systems including, but not limited to EMR, the Pharmacy System, and the research systems and its associated electronic data management systems.

For blinded clinical trial that involves providing a blinded drug based intervention the hospital pharmacy system needs to capabilities to un-blind in an emergency the study treatments and to manage the resupply to the patient on the behalf of the study

4.      Data Management


Accurate, reliable, usable data — it's the lifeblood of clinical research. The method an investigator chooses for collecting, storing and analyzing data can mean the difference between a study that advances the science and improves patient care, or a study with inconclusive results and no publications. Typically the Data Management functionality will capture all of the structured and unstructured data that is captured in study documents. This can be used to provide a warehouse of all research data that has been captured from the research activities. Also there should be a role and site level access which allows users from other institutions to contribute data to the studies

The system should not only be able to support studies requiring low to medium data collection complexity but also should be able to manage regulatory compliance (for eg: 21 CFR Part 11), sophisticated data management and quality control, for multi-site trials.


5.      Data Marts and Knowledge Management

A project data mart is typically project specific collection of data that enables clinical and research data to be extracted from their primary data management systems and combines and curates the study data into a system that enables researchers to explore and analyze their data according to the study design.

A Knowledge Management System is a searchable repository of research results (or Facts") that capture the published and published findings of research activities. This includes statistical relationships between patients and their biology and integrates entities across patients, literature, markers and drugs. Data collected from across the research activates needs to be analyzed to make inferences about the specific research hypothesis.



V.                 The way ahead

India is being touted as one of the fastest growing market globally for clinical trials with more than 15% of global clinical trials expected to be carried out in the country [3]. With increasing market size and complexity there is a need of better ways to transfer and access patient information electronically. A clinical research enterprise that is configured around such electronic information systems will yield more rapid scientific discovery and will provide significant support of related activities including  Comparative effectiveness of clinical trials and other outcomes-related research; Quality of care measurement; public health and safety monitoring, and post-marketing surveillance.

With a widespread EMR adoption, the interface between “bench and bedside” is gradually becoming more porous and productive, while providing the required oversight. These improvements will positively affect patients, physicians, researchers, entities which invest in clinical research, and ultimately all who look to scientific discovery to propel medical advancement

References:



[1] Alschuler L, Bain L, Kush RD. Improving data collection for patient care and clinical trials. Sci Career Mag Mar 26 2004



[2]  Pavlovic I, Kern T, Miklavcic D. Comparison of paper-based and electronic data collection process in clinical trials: Costs simulation study. Contemp Clin Trials 2009; 30: 300-16.


Literature Review: